Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 4(3): 6010-6019, 2019 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-31459748

RESUMO

New nanocomposites have been prepared by combining tin selenide (SnSe) with graphene oxide (GO) in a simple aqueous solution process followed by ice templating (freeze casting). The resulting integration of SnSe within the GO matrix leads to modifications of electrical transport properties and the possibility of influencing the power factor (S 2σ). Moreover, these transport properties can then be further improved (S, σ increased) by functionalization of the GO surface to form modified nanocomposites (SnSe/GOmod) with enhanced power factors in comparison to unmodified nanocomposites (SnSe/GO) and "bare" SnSe itself. Functionalizing the GO by reaction with octadecyltrimethoxysilane (C21H46O3Si) and triethylamine ((CH3CH2)3N) switches SnSe from p-type to n-type conductivity with an appreciable Seebeck coefficient and high electrical conductivity (1257 S·m-1 at 539 K), yielding a 20-fold increase in the power factor compared to SnSe itself, prepared by the same route. These findings present new possibilities to design inexpensive and porous nanocomposites based on metal chalcogenides and functionalized carbon-derived matrices.

2.
Nanoscale Adv ; 1(9): 3568-3578, 2019 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-36133567

RESUMO

This work reports the growth kinetics of amorphous nanowires (NWs) developed by the vapour-liquid-solid (VLS) mechanism. The model presented here incorporates all atomistic processes contributing to the growth of amorphous oxide NWs having diameters in the 5-100 nm range. The steady state growth condition has been described by balancing the key atomistic process steps. It is found that the 2D nano-catalyst liquid and NW solid (L-S) interface plays a central role in the kinetic analysis. The balance between the 2D Si layer crystallization and oxidation rate is quantitatively examined and compared with experimental values. The atomistic process dependencies of the NW growth rate, supersaturation (C/C 0), desolvation energy (Q D) barrier and NW diameter have been analyzed in detail. The model successfully predicts the reported NW growth rate to be in the range of 1-10 µm s-1. A novel seed/catalyst metal-based synthesis strategy for the preparation of amorphous silica NWs is reported. A nickel thin film on Si is used as a seed metal for the Au assisted VLS growth of silica NWs. The experimental results provide evidence of the creation of SiO under the given conditions followed by Si injection in the Au-Si nano-catalyst solution. The usage of seed metal was observed to reduce the growth temperature compared to the methods reported in the literature and obtain similar growth rates. The technique presented here holds promise for the synthesis of sub-100 nm diameter NWs.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...